High Performance Power Electronics Integrations

# Plan for Dissemination, Communication, and Exploitation

| Deliverable Number                   | D7.9                                            |
|--------------------------------------|-------------------------------------------------|
| Primary Author                       | Michael Noest (IESTA), Jenny Weidenauer (IESTA) |
| Lead Beneficiary                     | IESTA                                           |
| Deliverable Type                     | R – Document, Report                            |
| <b>Dissemination Level</b>           | PU (Public)                                     |
| Actual Delivery Date                 | 2023-04-28 (Month 6)                            |
| Pages                                | 44                                              |
| <b>Document Version &amp; Status</b> | V1.3   Final                                    |

| Project Acronym     | HiPE                                                           |  |
|---------------------|----------------------------------------------------------------|--|
| Project Title       | High Performance Power Electronics Integrations                |  |
| Project ID          | 101056760                                                      |  |
| Project Coordinator | VIRTUAL VEHICLE Research Center (ViF)<br>Bernhard Brandstätter |  |
|                     | (bernhard.brandstaetter@v2c2.at)                               |  |



Funded by the European Union



## Contributor(s)

| Name         | Organisation | Name          | Organisation |
|--------------|--------------|---------------|--------------|
| M. Noest     | IESTA        | J. Weidenauer | IESTA        |
| J. Worschech | IESTA        |               |              |

## Reviewers

| Name            | Organisation | Date       |
|-----------------|--------------|------------|
| M. Ćustić       | ViF          | 2023-04-14 |
| B. Brandstätter | ViF          | 2023-04-14 |

## **Change History**

| Version | Date       | Name/Organisation | Description                           |
|---------|------------|-------------------|---------------------------------------|
| 0.1     | 2022-12-22 | IESTA             | Initial Creation                      |
| 0.2     | 2022-12-28 | IESTA             | Content for all chapters              |
| 0.3     | 2023-04-07 | IESTA             | Review Version                        |
| 1.0     | 2023-04-30 | IESTA             | Delivery for submission               |
| 1.1     | 2023-04-14 | ViF               | Coordinator Review                    |
| 1.2     | 2023-04-21 | IESTA             | Final Version                         |
| 1.3     | 2023-04-28 | ViF               | Formal Review and Deliverable Release |

## Disclaimer:

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

## **Table of Contents**

| 1. | Exe  | ecutiv  | ve Summary                                        | 6  |
|----|------|---------|---------------------------------------------------|----|
| 2. | Intr | oduct   | ction and Objectives                              | 7  |
|    | 2.1  | Intro   | roduction                                         | 7  |
|    | 2.2  | Obje    | jectives                                          | 7  |
| 3. | Pla  | ins foi | or Dissemination, Communication, and Exploitation | 9  |
|    | 3.1  | Bas     | sic information and boundary conditions           | 9  |
|    | 3.2  | Plar    | n for Dissemination                               | 10 |
|    | 3.2  | .1      | Dissemination methodology & approach              | 10 |
|    | Э    | 3.2.1.1 | .1 Dissemination methodology                      | 10 |
|    | Э    | 3.2.1.2 | .2 Dissemination approach                         | 11 |
|    | 3.2  | .2      | Disseminator                                      | 12 |
|    | 3.2  | .3      | Dissemination objects                             | 12 |
|    | 3.2  | .4      | Dissemination materials                           | 13 |
|    | 3.2  | .5      | Dissemination events                              | 13 |
|    | Э    | 8.2.5.1 | .1 Dissemination Events organised by HiPE         | 13 |
|    | Э    | 3.2.5.2 | .2 Dissemination Events HiPE can participate      | 13 |
|    | 3.2  | .6      | Dissemination target audience                     | 15 |
|    | 3.2  | .7      | Dissemination matrix                              | 16 |
|    | 3.3  | Plar    | In for Communication                              | 21 |
|    | 3.3  | .1      | Communication approach & methodology              | 21 |
|    | 3    | 3.3.1.1 | .1 Communication methodology                      | 21 |
|    | Э    | 3.3.1.2 | .2 Communication approach                         | 21 |
|    | 3.3  | .2      | Communicator                                      | 22 |
|    | 3.3  | .3      | Communication objects                             | 23 |
|    | 3.3  | .4      | Communication materials                           | 23 |
|    | 3.3  | .5      | Communication events                              | 23 |
|    | Э    | 8.3.5.1 | .1 HiPE internal communication events             | 23 |
|    | Э    | 3.3.5.2 | .2 HiPE external communication events             | 24 |
|    | 3.3  | .6      | Communication target audience                     | 25 |
|    | 3.3  | .7      | Communication matrix                              | 26 |
|    | 3.4  | Plar    | In for Exploitation including Standardisation     | 30 |
|    | 3.4  | .1      | Exploitation methodology & approach               | 30 |
|    | Э    | 3.4.1.1 | .1 Exploitation methodology                       | 30 |
|    | Э    | 3.4.1.2 | .2 Exploitation approach                          | 30 |
|    | 3.4  | .2      | Exploitation objectives                           | 31 |
|    | 3.4  | .3      | Exploitation materials                            | 32 |
|    | 3.4  | .4      | Exploitation events                               | 32 |
|    | 3    | 3.4.4.1 | .1 HiPE internal exploitation events              | 32 |
|    | Э    | 3.4.4.2 | .2 HiPE external exploitation events              | 33 |



|    | 3.4.5                                                                                 | Exploitation target audience | 34 |
|----|---------------------------------------------------------------------------------------|------------------------------|----|
|    | 3.4.6                                                                                 | Exploitation level           | 34 |
|    | 3.4.7                                                                                 | Exploitation matrix          | 35 |
| 4. | List of Deliverables related to WP7 "Dissemination, Communication and Exploitation"41 |                              |    |
| 5. | Conclusion42                                                                          |                              |    |
| 6. | Abbrevia                                                                              | ations                       | 43 |
| 7. | Referen                                                                               | ces                          | 44 |

# List of Figures

| Figure 3-1: Dissemination and Exploitation Draft Plan | ) |
|-------------------------------------------------------|---|
| Figure 3-2: Components of Lasswell model [8]10        | ) |

## List of Tables

| Table 2-1: Impact – Objective/relevance – Matrix                                       | 7       |
|----------------------------------------------------------------------------------------|---------|
| Table 3-1: Match of Lasswell communication model – HiPE dissemination                  |         |
| Table 3-2: HiPE dissemination basic time plan including/based on defined project deliv | rables  |
|                                                                                        | 11      |
| Table 3-3: HiPE dissemination                                                          | 12      |
| Table 3-4: Dissemination Events organised by HiPE                                      | 13      |
| Table 3-5: Dissemination Events HiPE can participate                                   | 13      |
| Table 3-6: Target Audience – Material - Dissemination Matrix                           | 16      |
| Table 3-7: Match of Lasswell – HiPE Communication                                      | 21      |
| Table 3-8: HiPE communication basic time plan including/based on defined               | project |
| deliverables                                                                           | 22      |
| Table 3-9: HiPE communicator                                                           | 22      |
| Table 3-10: Internal communication events                                              | 24      |
| Table 3-11: External communication events                                              | 24      |
| Table 3-12: Target Audience – Material - Communication Matrix                          | 26      |
| Table 3-13: HiPE exploitation basic time plan including/based on defined project deliv | erables |
|                                                                                        | 31      |
| Table 3-14: HiPE innovations - Key Exploitable Results                                 | 31      |
| Table 3-15: HiPE internal exploitation events                                          | 32      |
| Table 3-16: HiPE external exploitation events                                          | 33      |
| Table 3-17: Target audience - material - Exploitation matrix                           |         |
| Table 4-1: Overview WP7 deliverables                                                   | 41      |

# 1. Executive Summary

The deliverable contains and describes the approach for the dissemination, communication and exploitation activities - including standardisation - of HiPE. Every main pillar will be described within an own chapter listing the basic information, boundary conditions, the approach including timing and required processes like approvals from project partners for publications or open access approach.

Keywords: dissemination and communication plan, exploitation plan, standardisation

# 2. Introduction and Objectives

The overall aim of "WP7 Dissemination, Communication and Exploitation" is to ensure the visibility and awareness of the project beyond the scope of the consortium. This will be achieved by ensuring proper dissemination of the project objectives and its results, communication to and from the project relevant results in the areas of research, simulation, technology or business and cost assessment as well as by exploitation and sustainability of the project results during and after the project.

To ensure the achievement of this aim, the necessary dissemination, communication, and exploitation activities are planned, realised and monitored to maximise the impact of *HiPE*.

## 2.1 Introduction

The electrification of road transport is high on the political agenda of all major world economies. In the European Commission's Fit for 55 Strategy, overall vehicle emissions are proposed to be reduced by 55% by 2030, whereas those from vans need to be reduced by 50% at that point, with emissions from new cars to be zero by 2035 [1].

To reach these ambitious targets, a massive move towards powertrain electrification is required. At the same time, customers do not want to pay more for less performance (e.g., range) in comparison to ICE vehicles. Consequently, a smooth transition from user perspective (driving experience and performances to keep market acceptance) as well as from technology perspective (reduce technical risks by enabling growth in technology maturity and decrease of production costs) is required.

There is a growing need for accelerated uptake of electric drivetrain technology. Above all, affordability and driving range of BEVs need to be improved. *HiPE* will achieve this through the development of smart PE with enhanced efficiency at reduced cost. The integrated *HiPE* smart PE will reduce size and weight of the whole powertrain. Furthermore, modular architecture approaches will allow for the brand-independent transfer of results to a wide range of vehicle categories beyond those in the project. The *HiPE* activities are aimed towards the significant improvement of thermal management, functional safety, reliability, and availability of integrated smart PE. Altogether, research of *HiPE* will thus achieve improved automotive quality levels. These are exactly the challenges that the HiPE project addresses by providing brand-independent technologies and solutions fulfilling the needs of e-mobility of the future.

Regulations such as  $CO_2$  targets for vehicle fleets or even individual vehicle registration, additional fuel  $CO_2$  taxes or carbon markets for road fuels [2], diesel bans, progressive reduction of ICE powertrain or area access restrictions may be a major driver for the promotion of e-mobility in general. Thus, the HiPE achievements will provide a clear competitive advantage over competing solutions due to improved affordability, increased range, reliability and usability which will ultimately lead to a significantly larger market share for the *HiPE* solutions.

## 2.2 Objectives

Based on the impact requirements of the call topic HORIZON-CL5-2021-D5-01-02, the following objectives/relevance were defined during the proposal phase as base for the dissemination, communication, and exploitation activities within *HiPE*:

| Expected Impact from the Call                                                                                   | Objectives/Relevance of HiPE |
|-----------------------------------------------------------------------------------------------------------------|------------------------------|
| Accelerated uptake of zero tailpipe emission,<br>affordable, user-centric solutions for road-<br>based mobility |                              |

Table 2-1: Impact – Objective/relevance – Matrix



| Increased user acceptance, improved air<br>quality, a more circular economy and<br>reduction of environmental impacts | <ul> <li>Reduction of costs will improve affordability, thus increasing user acceptance. Likewise, reduction of losses will improve range, thus contributing to increasing user acceptance.</li> <li>Higher uptake of e-mobility will contribute to less emissions from road traffic, concerning not only CO<sub>2</sub> emissions but also NOx and fine-particles, thus improving air quality particularly in urban areas.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Effective design, assessment and deployment of innovative concepts in road vehicles and mobility services             | <ul> <li>One of <i>HiPE</i>'s unique innovative concepts is the improvement and integration of a SotA double-sided cooled SiC inverter.</li> <li><i>HiPE</i> is improving designs of eAxles through integration of converters and inverters. This allows a more compact design, reducing size and weight.</li> <li>The substantially improvement integration of, addressed in <i>HiPE</i> is essential for improved range and performance of BEVs</li> <li>Integration of transmission for optimised speed and load conditions, thus improving overall vehicle efficiency.</li> <li>Integration of ancillary and chassis control with smart PE based on GaN for improved vehicle efficiency and performance</li> <li>The development and implementation of CBA tools and TCO cost assessment tools for a brand-independent evaluation of <i>HiPE</i>-technologies</li> </ul> |

# 3. Plans for Dissemination, Communication, and Exploitation

The following sub-chapters provide a detailed outline of the plans for dissemination, communication, and exploitation.

## 3.1 Basic information and boundary conditions

The following basic information, definitions and boundary conditions are relevant for all the plans:

- According to the call topic: HORIZON-CL5-2021-D5-01-02, cooperation with other projects of the same call and/or the HORIZON-CL5-2021-D5-01-01, HORIZON-CL5-2021-D5-01-03, and HORIZON-CL5-2021-D5-01-04
- Horizon Results Booster: The usage or cooperation with this supporting action is highly appreciated.
- Cooperation with E-VOLVE Cluster for dissemination, and if possible, communication is planned
- The usage of established and approved methodologies and approaches from former and ongoing EU RTD project will be an intrinsic procedure to optimise the efforts and resources and maximise the result of Dissemination, Exploitation and Communication (DEC) project activities.
- Dissemination and communication can be done by one or several project partner as well as the overall project itself (called disseminator or communicator)
- DEC is monitored in quarterly status meetings, which collects activities done, activities planned and existing risks or challenges including possible countermeasures.
- Dissemination and communication are per definition public activities.
- Dissemination and communication will be realised according to the defined release and approval process agreed by all project partners (see D1.1 Project Management Handbook chapter 5.2.2.).
- Consortium partners will further interact with international partnerships and counterparts and create positive public awareness through the website and through campaigns directed at social media.
- Draft plan for dissemination, communication, and exploitation from the proposal phase (see Dissemination and Exploitation Draft Plan)
- Exploitation is per definition sensible and requires the explicit clearance from of the involved project partners.

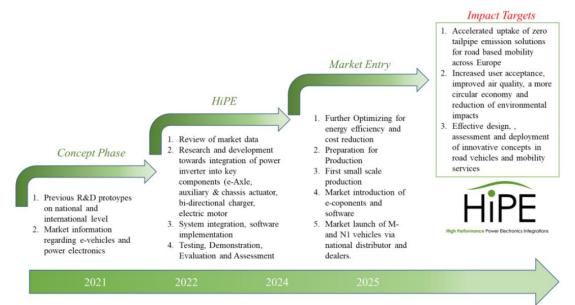



Figure 3-1: Dissemination and Exploitation Draft Plan



## **3.2 Plan for Dissemination**

The following sub-chapter is structured based on the following main pillars:

- Dissemination approach & methodology
- Dissemination objectives
- Dissemination materials
- Dissemination events
- Dissemination target audience
- Dissemination matrix

## 3.2.1 Dissemination methodology & approach

This chapter is structured according to the basic methodology and approach describing the planned timing and realisation measures for the dissemination activities within *HiPE*:

- Dissemination methodology
- Dissemination approach

## 3.2.1.1 Dissemination methodology

Within *HiPE*, the Lasswell communication model will be used to organise, and implement the dissemination activities of the project. Lasswell's model analyses communication in terms of five basic questions: "Who", "Says What", "In What Channel", "To Whom", and "With What Effect" (see following Figure 3-2 and Table 3-1) [3][4][5][6][7]:

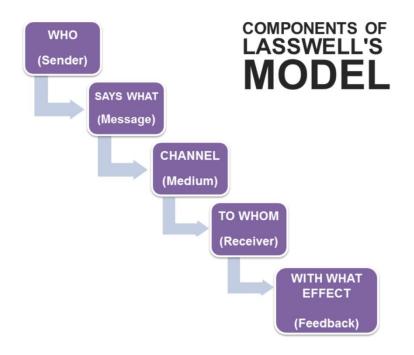



Figure 3-2: Components of Lasswell model [8]

| Question          | Element      | HiPE                                                |
|-------------------|--------------|-----------------------------------------------------|
| Who?              | Communicator | Disseminator on different levels within the project |
| Says what?        | Message      | Dissemination objects                               |
| In which channel? | Medium       | Dissemination materials & Dissemination events      |
| To whom?          | Audience     | Dissemination target audience                       |
| With what effect? | Effect       | Dissemination of project results                    |

Table 3-1: Match of Lasswell communication model – HiPE dissemination

## 3.2.1.2 Dissemination approach

The HiPE dissemination approach can be summarised in the following way:

- Creating all relevant dissemination materials such as roll-up, flyer, Website, Social Media Accounts and Dissemination plan (D7.1)
- Quarterly collection of dissemination activities from partners → basis for public communication (Homepage, LinkedIn)
- Adjustment of dissemination activities, strategy and focus according to the collected results
- Continuous updating of the Website and Social Media Accounts
- Yearly collection and selection of project results from the partners for the HiPE newsletters

Table 3-2 shows the basic time plan for the dissemination activities:

|                                          | and a second sec |                      |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Table 3-2: HiPE dissemination basic time | pian including/based on defined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | project deliverables |

| Start Date    | End Date         | Content                                                                                     |  |  |
|---------------|------------------|---------------------------------------------------------------------------------------------|--|--|
| November 2022 | December<br>2022 | Project Homepage and social media accounts developed                                        |  |  |
| November 2022 | January 2023     | <b>M3/D7.1:</b> Project marketing basics and webpage (inclusive all dissemination material) |  |  |
| April 2023    | April 2023       | <b>M6/D7.9:</b> Plan for Dissemination, Communication and Exploitation                      |  |  |
| August 2023   | October 2023     | M12/D7.6: Newsletter 1                                                                      |  |  |
| April 2024    | April 2024       | M18/D7.2: Intermediate Dissemination & Communication report                                 |  |  |
| August 2024   | October 2024     | M24/D7.7: Newsletter 2                                                                      |  |  |
| October 2025  | October 2025     | <b>M36/D7.3:</b> Final Communication & Dissemination Report                                 |  |  |
| August 2025   | October 2025     | M36/D7.8: Newsletter 3                                                                      |  |  |

## 3.2.2 Disseminator

In the following, the project's disseminators are defined (see Table 3-3):

Table 3-3: HiPE dissemination

| Disseminator Type  | Project Partner                                                                                                                                                                                                                           |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Research           | <ul> <li>ViF</li> <li>TUIL</li> <li>Fraunhofer</li> <li>UTIA AV CR</li> <li>UoS</li> <li>IESTA</li> </ul>                                                                                                                                 |
| Industrial Results | <ul> <li>OEM:         <ul> <li>FORD OTOSAN</li> <li>ŠKODA AUTO a.s</li> </ul> </li> <li>Tier I &amp; Technology provider         <ul> <li>AVL</li> <li>I&amp;M</li> <li>MARELLI</li> <li>Nexperia</li> <li>TENNECO</li> </ul> </li> </ul> |
| Standardisation    | <ul> <li>OEM:         <ul> <li>FORD OTOSAN</li> <li>ŠKODA AUTO a.s</li> </ul> </li> <li>Tier I &amp; Technology provider         <ul> <li>AVL</li> <li>I&amp;M</li> <li>MARELLI</li> <li>Nexperia</li> <li>TENNECO</li> </ul> </li> </ul> |
| Project Objectives | <ul><li>ViF</li><li>IESTA</li></ul>                                                                                                                                                                                                       |

#### 3.2.3 Dissemination objects

The following project results can be defined as dissemination objectives:

- Advanced simulation models for PE architecture
- Advanced Vehicle simulation including simulation models of HiPE PE architecture
- Innovative digital twins for PE integrated in the vehicle development
- 400V SiC Inverter including e-axle EM integration experience
- Advanced chassis actuators with 400V GaN PE including concepts, prototype, integration experiences and evaluation results
- 800V WBG-Bi-On-Board Charger with DC-DC-Converter including concepts, prototype, integration experiences and evaluation results
- Value analysis and cost assessment of HiPE technologies
- Demonstration activities for HiPE technologies in emulated and real operational environments
- Innovative & Novel Semiconductor Cooling Concepts
- Thermal Powertrain System Layout and Co-Simulation
- Predictive Thermal and Powertrain Management Simulation



## 3.2.4 Dissemination materials

The dissemination materials are fully described in D7.1 Project marketing basics and webpage.

## 3.2.5 Dissemination events

The following tables (Table 3-4 and Table 3-5) give an overview of the various identified dissemination events, which could be relevant for HiPE and its project partners. The dissemination events are split into the following categories:

- Dissemination Events organised by HiPE
- Dissemination Events HiPE can participate

#### 3.2.5.1 Dissemination Events organised by HiPE

These events (shown in Table 3-4) will be organised by HiPE and its partners to present the project results to the public and relevant stakeholders.

Table 3-4: Dissemination Events organised by HiPE

| Event                                | Description                                                                                                                                                                  | Parties Involved                                           |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| <b>DEO1</b> : Mid-term event<br>HiPE | This event is organised by HiPE<br>partners to show first results of the<br>project to the public. The event<br>can be organised in a physical,<br>hybrid or online way.     | All partners, all identified dissemination target audience |  |
| <b>DEO2</b> : Final event HiPE       | This event is organised by HiPE<br>partners to show the final results<br>of the project to the public. The<br>event can be organised in a<br>physical, hybrid or online way. | All partners, all identified dissemination target audience |  |

#### 3.2.5.2 Dissemination Events HiPE can participate

The listed events in the Table 3-5 are big international events which HiPE partners can participate in for dissemination purposes. For these events, the HiPE dissemination materials should be used. Furthermore, these events give the possibility for HiPE partners to represent HiPE by providing papers and preparing presentations.

Table 3-5: Dissemination Events HiPE can participate

| Event                                                  | Topic/Focus                                                                           | Date                      | Place                       | Website                                                                                                  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------|
| <b>DEP1</b> :<br>Innovationsforum<br>Mobility          | Strategies and<br>business models for<br>the mobility of the<br>future                | 29 30.<br>June 2023       | Kreuzlingen,<br>Switzerland | Innovationsforum<br>Mobility   Home<br>(innovationsforum-<br>mobility.ch)                                |
| <b>DEP2</b> :<br>ZeroEmission<br>Mediterranean<br>2023 | Renewable Energies,<br>E-Storage, E-Mobility,<br>Energy Efficiency and<br>Communities | 10 12.<br>October<br>2023 | Rome, Italy                 | Envertech, get the<br>most from the sun<br>from our<br>microinverters -<br>ZeroEmission<br>Mediterranean |
| DEP3: WCX<br>SAE World<br>Congress                     | Various topics<br>covering Mobility                                                   | 18 20.<br>April 2023      | Detroit, USA                | WCX 2023 - April 18-<br>20, 2023 - Detroit<br>(sae.org)                                                  |
| <b>DEP4</b> : Energy<br>Tech Summit                    | Latest developments<br>in energy and mobility<br>convergence theme                    | 26 27.<br>April 2023      | Warsaw,<br>Poland           | Energy Tech Summit<br>2023   Energy Tech &                                                               |



|                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       | 1                           | 1                      |                                                                                                                          |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       |                             |                        | <u>E-Mobility</u><br><u>Conference</u>                                                                                   |
| DEP5:<br>International<br>Business<br>Convention for<br>Automotive &<br>Vehicle<br>Innovation | Explore the key<br>challenges and<br>opportunities of the<br>future of mobility and<br>new vehicle<br>technologies                                                                                                                                                                                                                                                    | 19 20.<br>March 2024        | Torino, Italy          | italy.vehiclemeetings<br>- Vehicle &<br>Transportation<br>Technology<br>Innovation Meetings  <br>March 30-31, 2022       |
| <b>DEP6</b> :<br>AutoTech:<br>Detroit 2023                                                    | Showcasing the newest tech and the latest vehicles                                                                                                                                                                                                                                                                                                                    | 7 8. June<br>2023           | Detroit, USA           | AutoTech: Detroit<br>2023   Formerly TU-<br>Automotive Detroit<br>(informa.com)                                          |
| <b>DEP7</b> : The<br>International<br>Mobility Summit                                         | Various topics<br>covering Mobility                                                                                                                                                                                                                                                                                                                                   | 10 11.<br>October<br>2023   | Copenhagen,<br>Denmark | <u>The International</u><br><u>Mobility Summit -</u><br><u>Electronomous</u>                                             |
| <b>DEP8</b> :<br>Automotive<br>Europe 2023                                                    | The transition to<br>Electric Vehicles<br>The Software Defined<br>vehicle<br>Vehicle Safety<br>Autonomous Vehicles<br>The Evolution of the<br>OEM Business Model                                                                                                                                                                                                      | 16 17.<br>May 2023          | Munich,<br>Germany     | Automotive Europe<br>2023<br>(reutersevents.com)                                                                         |
| <b>DEP9</b> :<br>Automotive<br>Masterminds                                                    | (De)Globalisation and<br>Cold War 2.0<br>Software, chips and<br>data<br>Autonomous driving<br>Sustainability,<br>electrification and<br>hydrogen                                                                                                                                                                                                                      | 25 - 26 April<br>2023       | Berlin,<br>Germany     | <u>Automotive</u><br><u>Masterminds 2023 -</u><br><u>The New Automotive</u><br><u>Conference</u><br>(automasterminds.de) |
| <b>DEP10</b> : Future<br>Mobility Asia                                                        | Showcase future road<br>mobility concepts,<br>solutions, technologies<br>and innovations                                                                                                                                                                                                                                                                              | 17 - 19 May<br>2023         | Bangkok,<br>Thailand   | Future Mobility Asia<br>2023   17-19 May<br>2023 - Exhibit at<br>Future Mobility Asia<br>(future-mobility.asia)          |
| <b>DEP11</b> : Agile<br>Automotive<br>Engineering<br>Summit                                   | Focuses on agility in<br>the automotive<br>industry; how to apply<br>agile methods,<br>principles and develop<br>agile organisational<br>structures to speed up<br>product developments<br>as well as launches,<br>so the industry can<br>reduce development<br>times, costs and thus<br>stay competitive and<br>meet customers'<br>needs as well as<br>requirements. | 26 - 28<br>November<br>2023 | Berlin,<br>Germany     | Home   Agile<br>Automotive<br>Engineering Summit<br>(agile-for-software-<br>defined-vehicles.com)                        |

| <b>DEP12</b> : eMOVE 360°                                                       | Various topics<br>covering Mobility                                             | 17 - 19<br>October<br>2023   | Munich,<br>Germany    | eMove360° EUROPE<br>2023   Intern.<br>Fachmesse für<br>Mobilität 4.0                                              |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------|
| <b>DEP13</b> : Electric<br>& hybrid vehicle<br>technology Expo<br>Europe        | Latest developments<br>in the advanced<br>battery and automotive<br>industries. | 23 - 25 May<br>2023          | Stuttgart,<br>Germany | Electric & Hybrid<br>Vehicle Technology<br>Expo Europe   23-25<br>May, 2023<br>(evtechexpo.eu)                    |
| <b>DEP14</b> : Electric<br>& hybrid vehicle<br>technology Expo<br>North America | Latest developments<br>in the advanced<br>battery and automotive<br>industries. | 12 - 14<br>September<br>2023 | Novi, USA             | Electric & Hybrid<br>Vehicle Technology<br>Expo North America  <br>September 12 – 14,<br>2023<br>(evtechexpo.com) |

## 3.2.6 Dissemination target audience

The following target audiences were identified:

- Scientific communities, especially in the domain of e-vehicle PE and inverters.
- R&D project ecosystem: R&D projects related to the HiPE project, e.g., by similar targets, technology, or interests.
- Technology users: Companies developing BEV PE and inverters as well as Tier-I and OEM using the developed components, systems and tools within their own products.
- Technology providers: Companies and institutions developing tools and methods for BEV PE and inverters.
- European Commission: Main stakeholder of the project, responsible for set-up of R&D projects in line with the project call.
- Private and commercial customers of e-vehicles benefitting from higher efficiency and range and lower costs. Lower costs will increase affordability of e-mobility.
- General Public: Public community, interested in important project impact on public sector, especially lower CO<sub>2</sub> and other emissions from road transport.



## 3.2.7 Dissemination matrix

Table 3-6 shows all relevant dissemination information allocated to the identified target audience.

Table 3-6: Target Audience – Material - Dissemination Matrix

| Target<br>Audience        | Dissemination Objects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dissemination Material                                                                                                                                                     | Dissemination Events                                  | HiPE Dissemination<br>Level   |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------|
| Scientific<br>communities | <ul> <li>Advanced simulation models for PE architecture</li> <li>Advanced Vehicle simulation including simulation models of HiPE PE architecture</li> <li>Innovative digital twins for PE integrated in the vehicle development</li> <li>400V SiC Inverter including e-axle EM integration experience</li> <li>Advanced chassis actuators with 400V GaN PE including concepts, prototype, integration experiences and evaluation results</li> <li>800V WBG-Bi-On-Board Charger with DC-DC-Converter including concepts, prototype, integration experiences and evaluation results</li> <li>Value analysis and cost assessment of HiPE technologies</li> <li>Demonstration activities for HiPE technologies in emulated and real operational environments</li> <li>Innovative &amp; Novel Semiconductor Cooling Concepts</li> </ul> | <ul> <li>HiPE Folder</li> <li>HiPE Roll-up</li> <li>HiPE Demonstration Video(s)</li> <li>HiPE Presentations</li> <li>HiPE Papers</li> <li>HiPE Research Results</li> </ul> | <ul> <li>DEO1 – DEO2</li> <li>DEP1 – DEP14</li> </ul> | • Consortium<br>Dissemination |



| R&D project<br>ecosystem | <ul> <li>Thermal Powertrain System Layout<br/>and Co-Simulation</li> <li>Predictive Thermal and Powertrain<br/>Management Simulation</li> <li>Advanced simulation models for PE<br/>architecture</li> <li>Advanced Vehicle simulation<br/>including simulation models of HiPE<br/>PE architecture</li> <li>Innovative digital twins for PE<br/>integrated in the vehicle development</li> <li>400V SiC Inverter including e-axle<br/>EM integration experience</li> <li>Advanced chassis actuators with<br/>400V GaN PE including concepts,<br/>prototype, integration experiences<br/>and evaluation results</li> <li>800V WBG-Bi-On-Board Charger<br/>with DC-DC-Converter including<br/>concepts, prototype, integration<br/>experiences and evaluation results</li> <li>Value analysis and cost assessment<br/>of HiPE technologies</li> <li>Demonstration activities for HiPE<br/>technologies in emulated and real<br/>operational environments</li> <li>Innovative &amp; Novel Semiconductor<br/>Cooling Concepts</li> </ul> | <ul> <li>HiPE Homepage</li> <li>HiPE LinkedIn Platform</li> <li>HiPE Folder</li> <li>HiPE Roll-up</li> <li>HiPE Demonstration Video(s)</li> <li>HiPE Presentations</li> <li>HiPE Papers</li> <li>HiPE Research Results</li> </ul> | <ul> <li>DEO1 – DEO2</li> <li>DEP1 – DEP14</li> </ul> | • Multi Partner<br>Dissemination |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------|
|                          | <ul><li>Cooling Concepts</li><li>Thermal Powertrain System Layout and Co-Simulation</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                   |                                                       |                                  |



| Technology<br>users     | <ul> <li>Predictive Thermal and Powertrain<br/>Management Simulation</li> <li>Advanced simulation models for PE<br/>architecture</li> <li>Advanced Vehicle simulation<br/>including simulation models of HiPE<br/>PE architecture</li> <li>Innovative digital twins for PE<br/>integrated in the vehicle development</li> <li>400V SiC Inverter including e-axle<br/>EM integration experience</li> <li>Advanced chassis actuators with<br/>400V GaN PE including concepts,<br/>prototype, integration experiences<br/>and evaluation results</li> <li>800V WBG-Bi-On-Board Charger<br/>with DC-DC-Converter including<br/>concepts, prototype, integration<br/>experiences and evaluation results</li> <li>Value analysis and cost assessment<br/>of HiPE technologies</li> <li>Innovative &amp; Novel Semiconductor<br/>Cooling Concepts</li> <li>Thermal Powertrain System Layout<br/>and Co-Simulation</li> <li>Predictive Thermal and Powertrain<br/>Management Simulation</li> </ul> | <ul> <li>HiPE Homepage</li> <li>HiPE LinkedIn Platform</li> <li>HiPE Folder</li> <li>HiPE Roll-up</li> <li>HiPE Demonstration Video(s)</li> <li>HiPE Presentations</li> <li>HiPE Papers</li> <li>HiPE Research Results</li> </ul> | <ul> <li>DEO1 – DEO2</li> <li>DEP1 – DEP14</li> </ul> | • Multi Partner<br>Dissemination                    |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|
| Technology<br>providers | <ul> <li>Advanced simulation models for PE architecture</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>HiPE Homepage</li> <li>HiPE LinkedIn Platform</li> <li>HiPE Folder</li> <li>HiPE Roll-up</li> </ul>                                                                                                                      | <ul> <li>DEO1 – DEO2</li> <li>DEP1 – DEP14</li> </ul> | <ul> <li>Multi Partner<br/>Dissemination</li> </ul> |



|                        | <ul> <li>Advanced Vehicle simulation including simulation models of HiPE PE architecture</li> <li>Innovative digital twins for PE integrated in the vehicle development</li> <li>400V SiC Inverter including e-axle EM integration experience</li> <li>Advanced chassis actuators with 400V GaN PE including concepts, prototype, integration experiences and evaluation results</li> <li>800V WBG-Bi-On-Board Charger with DC-DC-Converter including concepts, prototype, integration experiences and evaluation results</li> </ul>                                                         | <ul> <li>HiPE Demonstration Video(s)</li> <li>HiPE Presentations</li> <li>HiPE Papers</li> <li>HiPE Research Results</li> </ul>                                                                                                                      |                                                       |                               |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------|
| European<br>Commission | <ul> <li>Advanced simulation models for PE architecture</li> <li>Advanced Vehicle simulation including simulation models of HiPE PE architecture</li> <li>Innovative digital twins for PE integrated in the vehicle development</li> <li>400V SiC Inverter including e-axle EM integration experience</li> <li>Advanced chassis actuators with 400V GaN PE including concepts, prototype, integration experiences and evaluation results</li> <li>800V WBG-Bi-On-Board Charger with DC-DC-Converter including concepts, prototype, integration experiences and evaluation results</li> </ul> | <ul> <li>HiPE Logo</li> <li>HiPE Homepage</li> <li>HiPE LinkedIn Platform</li> <li>HiPE Folder</li> <li>HiPE Roll-up</li> <li>HiPE Demonstration Video(s)</li> <li>HiPE Presentations</li> <li>HiPE Papers</li> <li>HiPE Research Results</li> </ul> | <ul> <li>DEO1 – DEO2</li> <li>DEP1 – DEP14</li> </ul> | • Consortium<br>Dissemination |



|                                        | <ul> <li>Value analysis and cost assessment<br/>of HiPE technologies</li> <li>Demonstration activities for HiPE<br/>technologies in emulated and real<br/>operational environments</li> <li>Innovative &amp; Novel Semiconductor<br/>Cooling Concepts</li> <li>Thermal Powertrain System Layout<br/>and Co-Simulation</li> <li>Predictive Thermal and Powertrain<br/>Management Simulation</li> </ul> |                                                                                                                                                                                                                                   |                                                       |                                                     |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|
| Private and<br>Commercial<br>Customers | <ul> <li>Value analysis and cost assessment<br/>of HiPE technologies</li> <li>Demonstration activities for HiPE<br/>technologies in emulated and real<br/>operational environments</li> </ul>                                                                                                                                                                                                         | <ul> <li>HiPE Logo</li> <li>HiPE Homepage</li> <li>HiPE LinkedIn Platform</li> <li>HiPE Folder</li> <li>HiPE Roll-up</li> <li>HiPE Demonstration Video(s)</li> <li>HiPE Presentations</li> </ul>                                  | <ul> <li>DEO1 – DEO2</li> <li>DEP1 – DEP14</li> </ul> | <ul> <li>Multi Partner<br/>Dissemination</li> </ul> |
| General<br>Public                      | <ul> <li>Value analysis and cost assessment<br/>of HiPE technologies</li> <li>Demonstration activities for HiPE<br/>technologies in emulated and real<br/>operational environments</li> </ul>                                                                                                                                                                                                         | <ul> <li>HiPE Homepage</li> <li>HiPE LinkedIn Platform</li> <li>HiPE Folder</li> <li>HiPE Roll-up</li> <li>HiPE Demonstration Video(s)</li> <li>HiPE Presentations</li> <li>HiPE Papers</li> <li>HiPE Research Results</li> </ul> | <ul> <li>DEO1 – DEO2</li> <li>DEP1 – DEP14</li> </ul> | <ul> <li>Consortium<br/>Dissemination</li> </ul>    |



## 3.3 Plan for Communication

Dissemination and communication are using the same approaches, materials, and target audiences, but the differences lay in the objectives and the materials, which is not only focussed on the project results findings (focus of the dissemination), but on all relevant methodologies, research and development results regarding electric driving technologies, components, subsystem, powertrains and battery-electric vehicles (BEV). The chapter is structured based on the following main pillars:

- Communication approach & methodology
- Communicator
- Communication objectives
- Communication materials
- Communication events
- Communication target audience
- Communication matrix

#### 3.3.1 Communication approach & methodology

The chapter is structured according to the basic methodology and approach describing the planned timing and realisation measures for the dissemination activities within *HiPE*:

- Communication methodology
- Communication approach

The main difference between dissemination and communication is that in communication the (bi-directional) objects to be exchanged are not only limited to the project results but are additionally beyond of them covering all relevant topics related to electric vehicles, systems, powertrains, components, thermal management, materials, software and algorithms or simulations or economic / market information and conditions.

#### 3.3.1.1 Communication methodology

Table 3-7: Match of Lasswell – HiPE Communication

| Question          | Element      | HiPE                                                                       |  |  |  |  |
|-------------------|--------------|----------------------------------------------------------------------------|--|--|--|--|
| Who?              | Communicator | Communicator on different levels within the project                        |  |  |  |  |
| Says what?        | Message      | Communication objectives                                                   |  |  |  |  |
| In which channel? | Medium       | Communication materials & communication events                             |  |  |  |  |
| To whom?          | Audience     | Communication target audience                                              |  |  |  |  |
| With what effect? | Effect       | Communication of project results and external information into the project |  |  |  |  |

#### **3.3.1.2** Communication approach

The HiPE communication approach can be summarised in the following way:

- Using all relevant dissemination materials such as roll-up, flyer, Website and Social Media Accounts.
- Quarterly collection of communication activities from partners and their possible needs.
- Adjustment of communication activities, strategy and focus according to the collected results and possible needed information.
- Continuous updating of the Website and Social Media Accounts.
- Yearly collection and selection of project results from the partners for the newsletters.



## Table 3-8 shows the basic time plan for the activities:

Table 3-8: HiPE communication basic time plan including/based on defined project deliverables

| Start Date    | End Date     | Content                                                                                    |  |  |  |  |  |  |
|---------------|--------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| November 2022 | January 2023 | <b>M3/D7.1</b> Project marketing basics and webpage (inclusive all dissemination material) |  |  |  |  |  |  |
| April 2023    | April 2023   | <b>M6/D7.9:</b> Plan for Dissemination, Communication and Exploitation                     |  |  |  |  |  |  |
| August 2023   | October 2023 | M12/D7.6 Newsletter 1                                                                      |  |  |  |  |  |  |
| April 2024    | April 2024   | M18/D7.2 Intermediate Dissemination & Communication report                                 |  |  |  |  |  |  |
| August 2024   | October 2024 | M24/D7.7 Newsletter 2                                                                      |  |  |  |  |  |  |
| October 2025  | October 2025 | <b>M36/D7.3</b> Final Communication & Dissemination Report                                 |  |  |  |  |  |  |
| August 2025   | October 2025 | M36/D7.8 Newsletter 3                                                                      |  |  |  |  |  |  |

#### 3.3.2 Communicator

The following communicators are defined as described in Table 3-9:

Table 3-9: HiPE communicator

| Communication Type | Project Partner                                                                                                                                                                                                                           | External                                                                                                                |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Research           | <ul> <li>ViF</li> <li>TUIL</li> <li>Fraunhofer</li> <li>UTIA AV CR</li> <li>UoS</li> <li>IESTA</li> </ul>                                                                                                                                 | <ul> <li>Universities</li> <li>Technical<br/>universities</li> <li>External non-profit<br/>research entities</li> </ul> |  |  |  |
| Industrial Results | <ul> <li>OEM:         <ul> <li>FORD OTOSAN</li> <li>ŠKODA AUTO a.s</li> </ul> </li> <li>Tier I &amp; Technology provider         <ul> <li>AVL</li> <li>I&amp;M</li> <li>MARELLI</li> <li>Nexperia</li> <li>TENNECO</li> </ul> </li> </ul> | <ul> <li>OEM</li> <li>Tier I &amp;<br/>Technology<br/>providers within<br/>Europe</li> </ul>                            |  |  |  |
| Standardisation    | <ul> <li>OEM:         <ul> <li>FORD OTOSAN</li> <li>ŠKODA AUTO a.s</li> </ul> </li> <li>Tier I &amp; Technology provider         <ul> <li>AVL</li> <li>I&amp;M</li> <li>MARELLI</li> <li>Nexperia</li> <li>TENNECO</li> </ul> </li> </ul> | • none                                                                                                                  |  |  |  |



| Project objectives | • ViF | • All defined target |
|--------------------|-------|----------------------|
|                    | IESTA | groups               |

## 3.3.3 Communication objects

The relevant objects for communication from *HiPE* to the environment are the dissemination objects as described in chapter 3.2.3 and the following additional objects:

- Dissemination activities, like common events or conferences
- Information exchange for exploitation plans, relevant boundary conditions and business
   environments

The relevant objects for communication from the environment to the project *HiPE* are:

- Technology information for specification, development, evaluation and standardisation about updates and upgrades of the existing power electronics, inverters, on-board charger and DC/DC converter, digital twin frameworks.
- Information exchange about new simulation models including component, system and vehicle level simulations for BEV, inverters, converter, on-board chargers, controller and software.
- Economic information for the cost assessment regarding component-, sub-system prizes and operation costs, as well as their effects on systems (like powertrain) and vehicle-level (energy consumption, maintenance aspects...).

## **3.3.4 Communication materials**

For the communication from project to the external world, the communication materials are the same as the dissemination ones and described in D7.1 Project marketing basics and webpage.

For the communication from the external world to the project, the following materials are considered:

- Papers
- Conference and marketing presentation
- Research results of the scientific community
- Conferences roll-ups and flyers
- (Draft) Standards
- Public results of other national, European, and international research projects as well as bachelor, master, and PhD thesis

#### **3.3.5 Communication events**

The list of communication events includes the list of dissemination events as described in chapter 3.2.5 and additionally the following events covering the additional information exchange, split in two categories:

- HiPE internal communication events
- HiPE external communication events

#### **3.3.5.1 HiPE internal communication events**

Internal communication events (see Table 3-10) are the ones taking place inside the project and solely the project partners (with exceptions, e.g., Project Officer) are participating for information exchange.

#### Table 3-10: Internal communication events

| Event                                              | Description                                                                                                                                                                                                                                                                  | Parties Involved                 |  |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|
| <b>ICE1</b> : HiPE Monthly Online (Status) Meeting | This is an event which is done on a<br>monthly basis to discuss the<br>progress of the project and occurring<br>challenges with the whole<br>consortium as well as to discuss<br>administrative matters (planning of<br>events, changes in the project<br>consortium, etc.). | All partners                     |  |  |
| ICE2: Regular WP Meetings                          | This event is done for all HiPE WPs<br>to show the WPs progress and to<br>discuss occurring challenges and<br>next steps that needs to be taken.<br>These meetings can be quarterly,<br>monthly, bi-weekly or weekly,<br>depending on the WP and the<br>organisation of it.  | WP relevant partners             |  |  |
| ICE3: Bi-lateral meetings done when needed         | These meetings are only arranged<br>when needed by the partners. The<br>participating partners can be of any<br>WP and can even be the whole<br>consortium when needed.                                                                                                      | Invited partners                 |  |  |
| ICE4: 2 Project Review<br>Meetings                 | Planned are two review meetings<br>(M18 and M36). There the projects<br>progress is presented to the PO/the<br>reviewers and valuable feedback is<br>collected. The public or other<br>stakeholders have no access to<br>these meetings.                                     | All partners + PO +<br>reviewers |  |  |

#### 3.3.5.2 HiPE external communication events

External communication events (see Table 3-11) are including the project partners as well as the identified communication target audience.

Table 3-11: External communication events

| Event                              | Topic/Focus                                                                                                                                         | Date                        | Place                    | Website                                   |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|-------------------------------------------|
| ECE1: London<br>EV SHOW            | Connects the entire<br>global EV value chain,<br>from start-ups to<br>investors to<br>governments and<br>OEMs, and showcase<br>the latest solutions | 28 - 30<br>November<br>2023 | London, Great<br>Britain | London EV Show   28<br>- 30 November 2023 |
| ECE2: A3PS<br>Eco Mobility<br>2023 | Open                                                                                                                                                | Open                        | Vienna,<br>Austria       | Welcome to A3PS  <br>A3PS                 |



## **3.3.6 Communication target audience**

The following target audiences were identified:

- Scientific communities, especially in the domain of e-vehicle PE and inverters.
- R&D project ecosystem: R&D projects related to the HiPE project, e.g., by similar targets, technology, or interests.
- Technology users: Companies developing BEV PE and inverters as well as Tier-I and OEM using the developed components, systems and tools within their own products.
- Technology providers: Companies and institutions developing tools and methods for BEV PE and inverters.
- European Commission: Main stakeholder of the project, responsible for set-up of R&D projects in line with project call.
- Private and commercial customers of e-vehicles benefitting from higher efficiency and range and lower costs. Lower costs will increase affordability of e-mobility.
- General Public: Public community, interested in important project impact on public sector, especially lower CO<sub>2</sub> and other emissions from road transport.



## 3.3.7 Communication matrix

Table 3-12 shows all relevant communication information allocated to the identified target audience. It should be mentioned, that the "HiPE internal communication events" (see chapter 3.3.5.1) are HiPE internal events and therefore have – beside the project partners – no target audience. *Table 3-12: Target Audience – Material - Communication Matrix* 

| Target<br>Audience        | Communication Objects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Communication Material                                                                                                                                                                                                                                                                                                                                                                         | Communication Events                                                                    | HiPE<br>Communication<br>Level  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------|
| Scientific<br>communities | <ul> <li>Dissemination objects as shown in Table 3-6</li> <li>Technology information for specification, development, evaluation and standardisation about updates and upgrades of the existing power electronics, inverters, on-board charger and DC/DC converter, digital twin frameworks</li> <li>Information exchange about new simulation models including component, system and vehicle level simulations for BEV, inverters, converter, on-board chargers, controller and software</li> <li>Economic information for the cost assessment regarding component-, sub-system prizes and operation costs, as well as their effects on systems (like powertrain) and vehicle-level (energy consumption, maintenance aspects)</li> </ul> | <ul> <li>Dissemination material as shown in Table 3-6</li> <li>Papers</li> <li>Conference and marketing presentation</li> <li>Research results of the scientific community</li> <li>Conferences roll-ups and flyers</li> <li>(Draft) Standards</li> <li>Public results of other national, European, and international research projects as well as bachelor, master, and PhD thesis</li> </ul> | <ul> <li>Dissemination events<br/>as shown in Table 3-6</li> <li>ECE1 – ECE2</li> </ul> | • Consortium<br>Communication   |
| R&D project<br>ecosystem  | Dissemination objects as shown in Table 3-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dissemination material as shown in Table 3-6                                                                                                                                                                                                                                                                                                                                                   | Dissemination events     as shown in Table 3-6                                          | Multi Partner     Communication |



|                     | • | Technology information for<br>specification, development, evaluation<br>and standardisation about updates<br>and upgrades of the existing power<br>electronics, inverters, on-board<br>charger and DC/DC converter, digital<br>twin frameworks<br>Information exchange about new<br>simulation models including<br>component, system and vehicle level<br>simulations for BEV, inverters,<br>converter, on-board chargers,<br>controller and software                                                                                                                                                                                                                                               | • | Papers<br>Conference and marketing<br>presentation<br>Research results of the<br>scientific community<br>(Draft) Standards<br>Public results of other<br>national, European, and<br>international research<br>projects as well as bachelor,<br>master, and PhD thesis | • | ECE1 – ECE2                                                  |   |                                |
|---------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------|---|--------------------------------|
| Technology<br>users | • | Dissemination objects as shown in<br>Table 3-6<br>Technology information for<br>specification, development, evaluation<br>and standardisation about updates<br>and upgrades of the existing power<br>electronics, inverters, on-board<br>charger and DC/DC converter, digital<br>twin frameworks<br>Information exchange about new<br>simulation models including<br>component, system and vehicle level<br>simulations for BEV, inverters,<br>converter, on-board chargers,<br>controller and software<br>Economic information for the cost<br>assessment regarding component-,<br>sub-system prizes and operation<br>costs, as well as their effects on<br>systems (like powertrain) and vehicle- | • | Dissemination material as<br>shown in Table 3-6<br>Papers<br>Conference and marketing<br>presentation<br>Conferences roll-ups and<br>flyers                                                                                                                           | • | Dissemination events<br>as shown in Table 3-6<br>ECE1 – ECE2 | • | Multi Partner<br>Communication |



|                         | level (energy consumption, maintenance aspects…)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |                                                                                         |                                                     |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------|
| Technology<br>providers | <ul> <li>Dissemination objects as shown in Table 3-6</li> <li>Technology information for specification, development, evaluation and standardisation about updates and upgrades of the existing power electronics, inverters, on-board charger and DC/DC converter, digital twin frameworks</li> <li>Information exchange about new simulation models including component, system and vehicle level simulations for BEV, inverters, converter, on-board chargers, controller and software</li> </ul> | <ul> <li>Dissemination material as shown in Table 3-6</li> <li>Papers</li> <li>Conference and marketing presentation</li> <li>Conferences roll-ups and flyers</li> </ul>                                                         | <ul> <li>Dissemination events<br/>as shown in Table 3-6</li> <li>ECE1 – ECE2</li> </ul> | <ul> <li>Multi Partner<br/>Communication</li> </ul> |
| European<br>Commission  | <ul> <li>Dissemination objects as shown in Table 3-6</li> <li>Technology information for specification, development, evaluation and standardisation about updates and upgrades of the existing power electronics, inverters, on-board charger and DC/DC converter, digital twin frameworks</li> <li>Information exchange about new simulation models including component, system and vehicle level simulations for BEV, inverters, converter, on-board chargers, controller and software</li> </ul> | <ul> <li>Dissemination material as shown in Table 3-6</li> <li>(draft) Standards</li> <li>Public results of other national, European, and international research projects as well as bachelor, master, and PhD thesis</li> </ul> | <ul> <li>Dissemination events<br/>as shown in Table 3-6</li> <li>ECE1 – ECE2</li> </ul> | <ul> <li>Consortium<br/>Communication</li> </ul>    |



|                                        | • | Economic information for the cost<br>assessment regarding component-,<br>sub-system prizes and operation<br>costs, as well as their effects on<br>systems (like powertrain) and vehicle-<br>level (energy consumption,<br>maintenance aspects)                                                                                                                                                                                                                                                                                                  |   |                                                                                             |   |                                                       |   |                                |
|----------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------|---|-------------------------------------------------------|---|--------------------------------|
| Private and<br>Commercial<br>Customers | • | Dissemination objects as shown in<br>Table 3-6<br>Economic information for the cost<br>assessment regarding component-,<br>sub-system prizes and operation<br>costs, as well as their effects on<br>systems (like powertrain) and vehicle-<br>level (energy consumption,<br>maintenance aspects)                                                                                                                                                                                                                                                | • | Dissemination material as shown in Table 3-6                                                | • | Dissemination events<br>as shown in Table 3-6<br>ECE1 | • | Multi Partner<br>Communication |
| General<br>Public                      | • | Dissemination objects as shown in Table<br>3-6<br>Technology information for specification,<br>development, evaluation and<br>standardisation about updates and<br>upgrades of the existing power<br>electronics, inverters, on-board charger<br>and DC/DC converter, digital twin<br>frameworks<br>Economic information for the cost<br>assessment regarding component-, sub-<br>system prizes and operation costs, as<br>well as their effects on systems (like<br>powertrain) and vehicle-level (energy<br>consumption, maintenance aspects) | • | Dissemination material as<br>shown in Table 3-6<br>Conference and marketing<br>presentation | • | Dissemination events<br>as shown in Table 3-6<br>ECE1 | • | Consortium<br>Communication    |



## **3.4 Plan for Exploitation including Standardisation**

The chapter is structured based on the following main pillars:

- Exploitation approach & methodology
- Exploitation objectives
- Exploitation materials
- Exploitation events
- Exploitation target audience
- Exploitation level

## 3.4.1 Exploitation methodology & approach

The chapter is structured according to the basic methodology and approach describing the planned timing and realisation measures for the dissemination activities within *HiPE*:

- Exploitation methodology
- Exploitation approach

## 3.4.1.1 Exploitation methodology

The exploitation methodology is based on the approved methodology of the Horizon Results Booster. The following points provide an overview of the Horizon Results Booster methodology [9]:

- Define and review the key exploitable results of the project (see Table 3-14).
- Revise, complement and clarify (existing) exploitation plans and/or outline exploitation paths of results.
- Identify all relevant stakeholders in the exploitation value chain.
- Perform a risk analysis related to the exploitation of results.

#### **3.4.1.2 Exploitation approach**

The HiPE communication approach can be summarised as follow:

- Step 1: Using/adapting the Horizon Results Booster Exploitation Strategy for HiPE.
- Step 2: Intermediate Exploitation and Standardisation Report
  - Step 2a: Planning and executing the Horizon Results Booster Exploitation survey including general questions about interests, expectations, innovations, business cases of the HiPE partners in the project as well as considering more detailed questions about the product or service the HiPE partners are going to develop in the course of the HiPE project, which market is targeted and to what time it is planned to market the developed products or services after the HiPE project is done.
  - Step 2b: Analysing and assessing the Exploitation results of the surveys.
  - Step 2c: Planning and executing Exploitation/Standardisation workshop based on the survey results.
- Step 3: Final Exploitation and Standardisation Report
  - Step 3a: Planning and executing Standardisation Results and next steps workshop.
  - Step 3b: Planning and executing the Horizon Results Booster Exploitation survey (for what is asked please refer to Step 2a).
  - Step 3c: Analysing and assessing the Exploitation results of the surveys.
  - $\circ~$  Step 3d: Planning and executing Exploitation workshop based on of the survey results.
- All activities will be discussed and monitored within the quarterly status meetings.



In the following, the basic time plan for the activities is shown in Table 3-13:

Table 3-13: HiPE exploitation basic time plan including/based on defined project deliverables

| Start Date     | End Date          | Content                                                                |
|----------------|-------------------|------------------------------------------------------------------------|
| April 2023     | April 2023        | <b>M6/D7.9:</b> Plan for Dissemination, Communication and Exploitation |
| November 2023  | December<br>2023  | Horizon Results Booster survey for partners                            |
| February 2024  | February 2024     | Exploitation/Standardisation Workshop 1                                |
| April 2024     | April 2024        | M18/D7.4 Intermediate Exploitation Report                              |
| July 2025      | July 2025         | Standardisation Results and Next Steps Workshop 2                      |
| July 2025      | August 2025       | Horizon Results Booster survey for partners                            |
| September 2025 | September<br>2025 | Exploitation Workshop 2                                                |
| October 2025   | October 2025      | M36/D7.5 Final Exploitation Report                                     |

## **3.4.2 Exploitation objectives**

The following HiPE innovations in Table 3-14 (also called Key Exploitable Results or KERs for exploitation) are exploited by the different partners:

Table 3-14: HiPE innovations - Key Exploitable Results

| HiPE Innovation (Key Exploitable Result)                                                               | Exploiting Partners                   |
|--------------------------------------------------------------------------------------------------------|---------------------------------------|
| New scalable, modular and integrated <b>SiC-based</b><br>electric drive family (50-250 kW, 400V-1200V) | Marelli, Škoda, Ford Otosan           |
| New EMI filter concepts                                                                                | Marelli                               |
| New passive discharge circuits                                                                         | Marelli                               |
| Stray inductance reduction methods                                                                     | Marelli                               |
| New integrated WBG-based OBC and HV/LV<br>DC/DC converter concepts                                     | Ford Otosan                           |
| Advanced power module cooling systems                                                                  | Marelli, Virtual Vehicle, Ford Otosan |
| Integrated double-side pin-fin cooling concept                                                         | Virtual Vehicle, Ford Otosan, Marelli |

| Immersion/impingement/two-phase cooling concepts                                                        | Virtual Vehicle, Ford Otosan, Marelli          |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Digital sensor integration in the power module for enhanced ThMgt                                       | Virtual Vehicle, Nexperia                      |
| Model predictive and Al-based thermal control systems                                                   | Virtual Vehicle, Ford Otosan                   |
| <b>Digital twins and self-adapting CDTs</b> of WBG-<br>based electric drives for automotive powertrains | Fraunhofer, AVL, Marelli, University of Surrey |
| "Closed-loop" RUL control for SiC-based inverter systems                                                | Fraunhofer, University of Surrey               |
| Integrated fault-tolerant GaN-based drives for and chassis actuat.                                      | Ideas & Motion, Tenneco, University of Surrey  |

## 3.4.3 Exploitation materials

The exploitation materials are fully described in D7.1 Project marketing basics and webpage and are basically the same as the dissemination materials in chapter 3.2.4.

## **3.4.4 Exploitation events**

The list of exploitation events includes the list of external communication events as described in chapter 3.3.5.2 and additionally the following events covering the additional information exchange, split in two categories:

- HiPE internal exploitation events
- HiPE external exploitation events

#### 3.4.4.1 HiPE internal exploitation events

The internal exploitation events shown in Table 3-15 are solely planned for the project partners to discuss their exploitation plans and standardisation activities.

Table 3-15: HiPE internal exploitation events

| Event                                    | Description                                                                                                                                                       | Parties<br>Involved |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| <b>IEE1</b> : Exploitation<br>Workshop 1 | The exploitation workshop is organised to collect the first exploitation plans of the partners according to the Horizon Results Booster Exploitation methodology. | All partners        |
| <b>IEE2</b> : Exploitation<br>Workshop 2 | The exploitation workshop is organised to collect the final exploitation plans of the partners according to the Horizon Results Booster Exploitation methodology. | All partners        |
| IEE3:<br>Standardisation<br>Workshop 1   | This workshop aims to find first approaches and ideas how to standardise HiPE innovations and technologies for the international market.                          | All partners        |
| IEE4:<br>Standardisation<br>Workshop 2   | This workshop aims to find final approaches and ideas how to standardise HiPE innovations and technologies for the international market.                          | All partners        |



## 3.4.4.2 HiPE external exploitation events

External exploitation events (see Table 3-16) are including the project partners as well as the identified exploitation target audience. Main focus is here on events, which are mainly automobile fairs in Europe, that can be used for exploitation purposes.

Table 3-16: HiPE external exploitation events

| Event                                                   | Topic/Focus                                                                                                                                                                                                            | Date                             | Place                   | Website                                                                                                                                             |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>EEE1</b> : Frankfurter<br>Automobilausstellung       | News from the<br>automotive industry,<br>Electromobility                                                                                                                                                               | 07. May<br>2023                  | Frankfurt,<br>Germany   | Frankfurter<br>Automobil-<br>Ausstellung – Der<br>große automobile<br>Erlebnistag in<br>Frankfurt<br>(frankfurter-<br>automobil-<br>ausstellung.de) |
| <b>EEE2</b> : Autosalon<br>Chemnitz                     | News of German and<br>international<br>companies from the<br>automotive,<br>commercial vehicles,<br>motorcycles, consumer<br>goods, caravans, cars,<br>car spare parts<br>industries                                   | 16. – 17.<br>March 2024          | Chemnitz,<br>Germany    | Autosalon Chemnitz<br>2024 (neventum.de)                                                                                                            |
| EEE3: Poznan Motor<br>Show                              | The biggest automotive<br>trade fair in Central<br>Europe. The visitors<br>will see an extensive<br>exhibition of cars,<br>motorcycles, campers,<br>caravans and trucks                                                | 30. March –<br>02. April<br>2023 | Poznan,<br>Poland       | <u>Poznań Motor</u><br><u>Show   30.03-</u><br>02.04.2023                                                                                           |
| <b>EEE4</b> : Salon de<br>L'Auto Sportica<br>Gravelines |                                                                                                                                                                                                                        | 2024                             | Gravelines,<br>France   | Gravelines Auto<br>Show in Sportica<br>(salondelauto-<br>gravelines.com)                                                                            |
| EEE5: iMobility                                         | Intelligent Mobility,<br>including e-mobility<br>and new propulsion<br>systems                                                                                                                                         | 13. – 16.<br>April 2023          | Stuttgart,<br>Germany   | <u>i-Mobility   Messe</u><br><u>Stuttgart (messe-</u><br><u>stuttgart.de)</u>                                                                       |
| <b>EEE6:</b> Autosalon<br>Bratislava 2023               | Shows a cross-section<br>of the possibilities of<br>personal and<br>commercial transport,<br>electromobility and<br>related services                                                                                   | 20. – 23.<br>April 2023          | Bratislava,<br>Slovakia | Autosalon 2022  <br>www.incheba.sk                                                                                                                  |
| <b>EEE7:</b> Riga<br>International Motor<br>Show        | Vehicle show which will<br>include wide range of<br>exhibits like cars, car<br>accessories, tyres,<br>wheels, latest design<br>sports car, machines,<br>exhaust systems, new<br>bumpers, slide,<br>composite vehicles, | 28. – 30.<br>April 2023          | Riga,<br>Latvia         | The International<br>Motor Show Auto<br>2023   LiveRiga                                                                                             |



|                                        | sports books and<br>journals, latest<br>technologies,<br>equipment, gadgets                                                                                   |                              |                    |                                                                                |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|--------------------------------------------------------------------------------|
| <b>EEE8:</b> Automobil<br>Messe Erfurt | Ideal platform to find<br>out about future topics<br>and developments in<br>mobility, electro<br>mobility and concepts<br>for the smart city of the<br>future | 26. – 28.<br>January<br>2024 | Erfurt,<br>Germany | Automobilmesse<br>Erfurt - 27.01. –<br>29.01.2023<br>(automesse-<br>erfurt.de) |

## 3.4.5 Exploitation target audience

The following target audiences were identified:

- Scientific communities, especially in the domain of e-vehicle PE and inverters.
- R&D project ecosystem: R&D projects related to the HiPE project, e.g., by similar targets, technology, or interests.
- Technology users: Companies developing BEV PE and inverters as well as Tier-I and OEM using the developed components, systems and tools within their own products.
- Technology providers: Companies and institutions developing tools and methods for BEV PE and inverters.
- European Commission: Main stakeholder of the project, responsible for set-up of R&D projects in line with project call.
- Private and commercial customers of e-vehicles benefitting from higher efficiency and range and lower costs. Lower costs will increase affordability of e-mobility.
- General Public: Public community, interested in important project impact on public sector, especially lower CO<sub>2</sub> and other emissions from road transport.
- Standardisation organisations: Organisations which are creating international technical standards for BEV PE and inverters.

## 3.4.6 Exploitation level

The exploitation level is mostly partner specific depending on the HiPE innovation that is exploited (refer to Table 3-14 for details).



## **3.4.7 Exploitation matrix**

The exploitation matrix includes the results from the previous dissemination and exploitation matrices as well as the exploitation data described in chapter 3.4.

Table 3-17: Target audience - material - Exploitation matrix

| Target<br>Audience        | Exploitation Objects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Exploitation Material                                            | Exploitation Events                                                                                                                              | HiPE Exploitation<br>Level                                                          |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Scientific<br>communities | <ul> <li>Dissemination objects as shown in Table 3-6</li> <li>Communication objects as shown in Table 3-12</li> <li>New scalable, modular and integrated SiC-based electric drive family (50-250 kW, 400V-1200V)</li> <li>New EMI filter concepts</li> <li>New passive discharge circuits</li> <li>Stray inductance reduction methods</li> <li>New integrated WBG-based OBC and HV/LV DC/DC converter concepts</li> <li>Advanced power module cooling systems</li> <li>Integrated double-side pin-fin cooling concept</li> <li>Immersion/impingement/two-phase cooling concepts</li> <li>Digital sensor integration in the power module for enhanced ThMgt</li> <li>Model predictive and AI-based thermal control systems</li> <li>Digital twins and self-adapting CDTs of WBG-based electric drives for automotive powertrains</li> </ul> | <ul> <li>Dissemination Material as shown in Table 3-6</li> </ul> | <ul> <li>Dissemination Events<br/>as shown in Table 3-6</li> <li>Communication Events<br/>as shown in Table 3-12</li> <li>EEE1 – EEE8</li> </ul> | <ul> <li>Partner<br/>Exploitation,</li> <li>Multiparter<br/>Exploitation</li> </ul> |



|                          | "Oleand Lean" Dill control f 0:0                                                                                                                                                                                                                                                                                                                                   |                                              |                                                                                                                                                  |                                                                                     |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                          | "Closed-loop" RUL control for SiC-<br>based inverter systems                                                                                                                                                                                                                                                                                                       |                                              |                                                                                                                                                  |                                                                                     |
|                          | Integrated fault-tolerant GaN-based drives for and chassis actuat.                                                                                                                                                                                                                                                                                                 |                                              |                                                                                                                                                  |                                                                                     |
|                          | <ul> <li>Dissemination objects as shown in<br/>Table 3-6</li> </ul>                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                  |                                                                                     |
|                          | Communication objects as shown in Table 3-12                                                                                                                                                                                                                                                                                                                       |                                              |                                                                                                                                                  |                                                                                     |
| R&D project<br>ecosystem | <ul> <li>New scalable, modular and integrated<br/>SiC-based electric drive family (50-<br/>250 kW, 400V-1200V)</li> <li>New EMI filter concepts</li> <li>New passive discharge circuits</li> <li>Stray inductance reduction methods</li> <li>New integrated WBG-based OBC and<br/>HV/LV DC/DC converter concepts</li> <li>Advanced power module cooling</li> </ul> | Dissemination Material as shown in Table 3-6 | <ul> <li>Dissemination Events<br/>as shown in Table 3-6</li> <li>Communication Events<br/>as shown in Table 3-12</li> <li>EEE1 – EEE8</li> </ul> | <ul> <li>Partner<br/>Exploitation,</li> <li>Multiparter<br/>Exploitation</li> </ul> |



| Technology<br>users     | <ul> <li>Dissemination objects as shown in<br/>Table 3-6</li> <li>Communication objects as shown in<br/>Table 3-12</li> <li>New scalable, modular and integrated<br/>SiC-based electric drive family (50-<br/>250 kW, 400V-1200V)</li> <li>New EMI filter concepts</li> <li>New passive discharge circuits</li> <li>New integrated WBG-based OBC and<br/>HV/LV DC/DC converter concepts</li> <li>Advanced power module cooling<br/>systems</li> <li>Digital sensor integration in the power<br/>module for enhanced ThMgt</li> <li>Model predictive and AI-based<br/>thermal control systems</li> <li>"Closed-loop" RUL control for SiC-<br/>based inverter systems</li> <li>Integrated fault-tolerant GaN-based<br/>drives for and chassis actuat.</li> </ul> | <ul> <li>Dissemination Material as shown in Table 3-6</li> </ul>     | <ul> <li>Dissemination Events<br/>as shown in Table 3-6</li> <li>Communication Events<br/>as shown in Table 3-12</li> <li>EEE1 – EEE8</li> </ul> | <ul> <li>Partner<br/>Exploitation,</li> <li>Multiparter<br/>Exploitation</li> </ul> |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Technology<br>providers | <ul> <li>Dissemination objects as shown in<br/>Table 3-6</li> <li>Communication objects as shown in<br/>Table 3-12</li> <li>New EMI filter concepts</li> <li>New integrated WBG-based OBC and<br/>HV/LV DC/DC converter concepts</li> <li>Integrated double-side pin-fin cooling<br/>concept</li> <li>Immersion/impingement/two-phase<br/>cooling concepts</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Dissemination Material as<br/>shown in Table 3-6</li> </ul> | <ul> <li>Dissemination Events<br/>as shown in Table 3-6</li> <li>Communication Events<br/>as shown in Table 3-12</li> <li>EEE1 – EEE8</li> </ul> |                                                                                     |



| <ul> <li>"Closed-loop" RUL control for SiC-<br/>based inverter systems</li> <li>Integrated fault-tolerant GaN-based<br/>drives for and chassis actuat.</li> </ul> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|



| Private and<br>Commercial<br>Customers | <ul> <li>Dissemination objects as shown in Table 3-6</li> <li>Communication objects as shown in Table 3-12</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Dissemination Material as<br/>shown in Table 3-6</li> </ul>                                                            | <ul> <li>Dissemination Events<br/>as shown in Table 3-6</li> <li>Communication Events<br/>as shown in Table 3-12</li> <li>EEE1 – EEE8</li> </ul> | <ul> <li>Partner<br/>Exploitation,</li> <li>Multiparter<br/>Exploitation</li> </ul> |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| General Public                         | <ul> <li>Dissemination objects as shown in Table 3-6</li> <li>Communication objects as shown in Table 3-12</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Dissemination Material as<br/>shown in Table 3-6</li> </ul>                                                            | <ul> <li>Dissemination Events<br/>as shown in Table 3-6</li> <li>Communication Events<br/>as shown in Table 3-12</li> <li>EEE1 – EEE8</li> </ul> | <ul> <li>Partner<br/>Exploitation,</li> <li>Multiparter<br/>Exploitation</li> </ul> |
| Standardisation<br>Organisations       | <ul> <li>New scalable, modular and integrated<br/>SiC-based electric drive family (50-<br/>250 kW, 400V-1200V)</li> <li>New EMI filter concepts</li> <li>New passive discharge circuits</li> <li>Stray inductance reduction methods</li> <li>New integrated WBG-based OBC and<br/>HV/LV DC/DC converter concepts</li> <li>Advanced power module cooling<br/>systems</li> <li>Integrated double-side pin-fin cooling<br/>concept</li> <li>Immersion/impingement/two-phase<br/>cooling concepts</li> <li>Digital sensor integration in the power<br/>module for enhanced ThMgt</li> <li>Model predictive and AI-based<br/>thermal control systems</li> </ul> | <ul> <li>HiPE demonstration video(s)</li> <li>HiPE Presentations</li> <li>HiPE Papers</li> <li>HiPE research results</li> </ul> | • EEE1 – EEE8                                                                                                                                    | <ul> <li>Partner<br/>Exploitation,</li> <li>Multiparter<br/>Exploitation</li> </ul> |



| Digital twins and self-adapting CDTs     of WBG-based electric drives for     automotive powertrains |  |
|------------------------------------------------------------------------------------------------------|--|
| <ul> <li>"Closed-loop" RUL control for SiC-</li> </ul>                                               |  |
| based inverter systems                                                                               |  |
| <ul> <li>Integrated fault-tolerant GaN-based</li> </ul>                                              |  |
| drives for and chassis actuat.                                                                       |  |



## 4. List of Deliverables related to WP7 "Dissemination, Communication and Exploitation"

The following table (Table 4-1) provides a summarised overview about the done and planned deliverables in WP7 in a chronological order based on the submission date. The green coloured deliverables in the list are the ones already submitted and approved. *Table 4-1: Overview WP7 deliverables* 

**Deliverable Submission Date Submitted** Approved D7.1 - Project marketing basics and 31-January-2023 (M3)  $\mathbf{N}$ webpage D7.9 – Plan for dissemination. 30-April-2023 (M6)  $\mathbf{\Lambda}$ communication and exploitation D7.6 – Newsletter M12 31-October-2023 (M12) D7.2 - Intermediate Dissemination 30-April-2024 (M18) & Communication Report D7.4 – Intermediate Exploitation 30-April-2024 (M18) Report D7.7 – Newsletter M24 31-October-2024 (M24) D7.3 – Final Dissemination & 31-October-2025 (M36) **Communication Report** D7.5 – Final Exploitation Report 31-October-2025 (M36) D7.8 – Newsletter M36 31-October-2025 (M36)



# 5. Conclusion

The described plans for dissemination, communication and exploitation lay a solid base for the corresponding activities to promote the project and its results in the field of WBG power electronics using SiC and GaN technologies supporting 400V and 800V components for an increased energy and cost efficiency in BEV.

These described plans will be reviewed every project year and adjusted, if necessary. Also the feedback of the project officer and reviewer will be considered to increase the range and impact of *HiPE*.

HIPE

# 6. Abbreviations

| Term            | Definition                                      |  |
|-----------------|-------------------------------------------------|--|
| AI              | Artificial Intelligence                         |  |
| BEV             | Battery-Electric Vehicle(s)                     |  |
| СВА             | Cost Benefit Analysis                           |  |
| CDTs            | Compact digital twins                           |  |
| CO <sub>2</sub> | Carbon Dioxide                                  |  |
| DEC             | Dissemination, Exploitation and Communication   |  |
| EC              | European Commission                             |  |
| EM              | Electric Machine                                |  |
| EMI             | Electromagnetic interference                    |  |
| EU              | European Union                                  |  |
| GaN             | Gallium Nitride                                 |  |
| HiPE            | High Performance Power Electronics Integrations |  |
| ICE             | Internal Combustion Engine                      |  |
| KER             | Key Exploitable Results                         |  |
| OBC             | On-board chargers                               |  |
| OEM             | Original Equipment Manufacturer                 |  |
| PE              | Power Electronics                               |  |
| PhD             | Doctor of Philosophy (Philosophiae doctor)      |  |
| PO              | Project Officer                                 |  |
| PU              | Public                                          |  |
| R               | Document, Report                                |  |
| R&D             | Research & Development                          |  |
| RTD             | Research, Technology and Demonstration          |  |
| RUL             | Remaining useful life                           |  |
| SiC             | Siliciumcarbid                                  |  |
| ТСО             | Total Cost of Ownership                         |  |
| ThMgt           | Thermal Management                              |  |
| WBG             | Wide Bandgap                                    |  |
| WP              | Work Package                                    |  |



# 7. References

- [1] See: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-greendeal/delivering-european-green-deal\_en, accessed 01. August 2021
- [2] See: Proposal Effort Sharing Regulation at: https://ec.europa.eu/info/sites/default/files/proposal-amendment-effort-sharingregulationwith-annexes\_en.pdf, p. 7, accessed 01. August 2021
- [3] Lasswell, Harold (1948). Bryson, L. (ed.). The Structure and Function of Communication in Society. The Communication of Ideas. New York: Institute for Religious and Social Studies. p. 117.
- [4] Narula, Uma (2006). "1. Basic Communication Models". Handbook of Communication Models, Perspectives, Strategies. Atlantic Publishers & Dist. ISBN 978-81-269-0513-3.
- [5] Fiske, John (2011). "2. Other models". Introduction to Communication Studies. Routledge.
- [6] Watson, James; Hill, Anne (16 February 2012). "Lasswell's model of communication". Dictionary of Media and Communication Studies. A&C Black. ISBN 978-1-84966-563-6.
- [7] Berger, Arthur Asa (5 July 1995). Essentials of Mass Communication Theory. SAGE. pp. 12–3. ISBN 978-0-8039-7357-2
- [8] See: Lasswell's Communication Model Businesstopia, accessed 30. December 2022
- [9] Alessia Melasecche Germini (2023). "Horizon Result Booster", see: <u>Horizon Results</u> <u>Booster</u>, accessed 19. April 2023